This is a small excerpt from the original article, “Why Yogurt and Probiotics Make You Fat and Foggy,” by the Bulletproof Executive. Read on to learn, “3 Ways to a Healthy Gut Biome and Reduce Histamine Intolerance.”
#1) Follow the Bulletproof Diet to heal your gut:
Eat a low histamine, anti-inflammatory diet like the Bulletproof® Diet
as the primary way to protect your gut and reduce histamine intolerance. Eating prebiotic foods that selectively stimulate the growth of good bacteria in your gut is also helpful. Prebiotic foods in the ‘green portions’ of the Bulletproof diet include: Jerusalem artichoke, avocados, and vegetables high in soluble fiber like sweet potatoes, Brussels sprouts, asparagus, and turnips. Onions are in the yellow zone because of what they do to alpha brain waves, but they also have prebiotics in them.
Self-tracking tools like the Bulletproof Food Sense App
help to detect physiological responses to foods you are sensitive too that may be due to excess histamine concentration. Although histamine intolerance can be difficult to diagnose, one of the common symptoms is an elevated heart rate. Using the Food Sense App after meals (as instructed) will use the iPhone’s camera sensor to measure your heart rate and compare it to your baseline heart rate. If there was an increase of more than 16 beats per minute, then this signifies a food sensitivity and helps you zoom in on gut wrecking or histamine-rich foods.
#2) Reduce histamine producing bacteria
Avoid histamine producing bacteria like Lactobacillus casei, Lactobacillus reuteri, and Lactobacillus bulgaricus that are mostly commonly found in the majority of yogurts and fermented foods, especially when they are not balanced by other species. Rampant unbalanced focus on lactobacillus in yogurt has led to this problem.
#3) Increase histamine degrading bacteria
Finding ways to get more histamine degrading bacteria into your diet can be difficult, but is great for gut health and key to reducing histamine intolerance. High phenol foods like blueberries, coffee, and chocolate can feed a type of gut bacteria called firmacutes.
My favorite (best tasting) source of balanced bacteria is a yogurt-like product, called Amasi, that contains 30 carefully controlled strains of bacteria. Traditionally, Amasi is the renowned drink of the Masai warrior tribes in Northern Tanzania and Kenya and is known for its rich variety of beneficial bacteria and highly bioavailable nutrients.
As you might have heard on podcast episode #47 with Jordan Rubin, founder of Beyond Organic and creator of Amasi, he replicated the Masai tribes’ production system to produce Amasi from grass fed, antibiotic free, cow’s milk. Rubin even went to the extent to make sure he used the same genetic breed of the Masai’s cows to assure they have non-inflammatory kind of casein (Beta casein A2).
The fermentation of the Amasi is influenced by key histamine degrading bacteria: Lactobacillus plantarum, Bifdocaterium lactis, and Bifidobacterium longum.13,14 These particular strains not only lower histamine levels, reduce inflammation, and improve digestion, but Amasi as a whole food helps improve absorption of specific nutrients such as vitamin B6, B2, and K, folic acid, niacon, and zinc.
MLM alert – Beyond Organic, the creator of Amasi, is a multilevel marketing company. I despise that business model because it usually victimizes needy people, and it leads to low quality or high prices. Long discussions with Jordan and an evaluation of his standards and pricing lead me to believe that Beyond Organic is not out to victimize people and is charging a fair price for impossibly high quality dairy. I did not decide to mention a MLM company lightly and did so after great diligence. If you don’t like it that I’ve made this decision, I invite you either accept it or unsubscribe. It is a decision made with integrity.
Beyond Organic has gone to great lengths to do everything right in creating a truly transformative dairy product. I have never seen anything like it and Amasi is the only yogurt-like food my body has been able to digest flawlessly, and it tastes great! Amasi is a great way to allow a little bit of yogurt into your life and still feel perfectly normal afterwards.
This is why I worked with Beyond Organic to create customized Bulletproof packs at a special discounted rate for the Bulletproof Community to try these incredible products yourselves. The Bulletproof® Packs
were personally crafted to include an assortment of Bulletproof approved foods and beverages that will help upgrade your gut health and mental performance, including: Amasi, Omega powder, grass-fed low histamine beef jerky, almonds, and herbs.
This is an excerpt taken from the article mentioned above by Ben Greenfield, in which he has used SweetBeat to monitor his training and recovery. He goes over a little bit of background information about heart rate and heart rate variability. Followed up by some very interesting graphs from his personal sessions.
First, I’m going to explain HRV to you, and then I’ll tell you the best way to track your HRV.
The origin of your heartbeat is located in what is called a “node” of your heart, in this case, something called the sino-atrial (SA) node. In your SA node, cells in your heart continuously generate an electrical impulse that spreads throughout your entire heart muscle and causes a contraction (Levy).
Generally, your SA node will generate a certain number of these electrical impulses per minute, which is how many times your heart will beat per minute. Below is a graphic of how your SA node initiates the electrical impulse that causes a contraction to propagate from through the Right Atrium (RA) and Right Ventricle (RV) to the Left Atrium (LA) and Left Ventricle (LV) of your heart.
So where does HRV fit into this equation?
Here’s how: Your SA node activity, heart rate and rhythm are largely under the control of your autonomic nervous system, which is split into two branches, your “rest and digest” parasympathetic nervous system and your “fight and flight” sympathetic nervous system.
Your parasympathetic nervous system (“rest-and-digest”) influences heart rate via the release of a compound called acetylcholine by your vagus nerve, which can inhibit activation of SA node activity and decrease heart rate variability.
In contrast, your sympathetic nervous system (“fight-and-flight”) influences heart rate by release of epinephrine and norepinephrine, and generally increases activation of the SA node and increases heart rate variability.
If you’re well rested, haven’t been training excessively and aren’t in a state of over-reaching, your parasympathetic nervous system interacts cooperatively with your sympathetic nervous system to produce responses in your heart rate variability to respiration, temperature, blood pressure, stress, etc (Perini). And as a result, you tend to have really nice, consistent and high HRV values, which are typically measured on a 0-100 scale. The higher the HRV, the better your score.
But if you’re not well rested (over-reached or under-recovered), the normally healthy beat-to-beat variation in your heart rhythm begins to diminish. While normal variability would indicate sympathetic and parasympathetic nervous system balance, and a proper regulation of your heartbeat by your nervous system, it can certainly be a serious issue if you see abnormal variability – such as consistently low HRV values (e.g. below 60) or HRV values that tend to jump around a lot from day-to-day (70 one day, 90 another day, 60 the next day, etc.).
In other words, these issues would indicate that the delicate see-saw balance of your sympathetic and parasympathetic nervous system no longer works.
In a strength or speed athlete, or someone who is overdoing things from an intensity standpoint, you typically see more sympathetic nervous system overtraining, and a highly variable HRV (a heart rate variability number that bounces around from day to day).
In contrast, in endurance athletes or people who are overdoing things with too much long, slow, chronic cardio, you typically see more parasympathetic nervous system overtraining, and a consistently low HRV value (Mourot).
In my own case, as I’ve neared the finish of my build to any big triathlon, I’ve noticed consistently low HRV scores – indicating I am nearing an overreached status and my parasympathetic, aerobically trained nervous system is getting “overcooked”. And in the off-season, when I do more weight training and high intensity cardio or sprint sports, I’ve noticed more of the highly variable HRV issues. In either case case, recovery of a taxed nervous system can be fixed by training less, decreasing volume, or decreasing intensity – supercompensation, right?
But wait – we’re not done yet! HRV can get even more complex than simply a 0-100 number.
For example, when using an HRV tracking tool, you can also track your nervous system’s LF (low frequency) and HF (high frequency) power levels. This is important to track for a couple of reasons:
-Higher power in LF and HF represents greater flexibility and a very robust nervous system.
-Sedentary people have numbers in the low 100’s (100-300) or even lower, fit and active people are around 900 – 1800 and so on as fitness and health improve.
Tracking LF and HF together can really illustrate the balance in your nervous system. In general, you want the two to be relatively close. When they are not, it may indicate that the body is in deeply rested state with too much parasympathetic nervous system activation (HF is high) or in a stressed state with too much sympathetic nervous system activation (LF is high). Confused as I was when I first learned about this stuff? Then listen to this podcast interview I did with a heart rate variability testing company called Sweetbeat. It will really elucidate this whole frequency thing for you.
So how the heck do you test HRV?
When it comes to self quantification, there are a ton of devices out there for tracking HRV (and hours of sleep, heart rate, pulse oximetry, perspiration, respiration, calories burnt, steps taken, distance traveled and more).
For example, there is one popular device called the “emWave2″, which seems like it is the ost popular heart rate variability tracking device among biohackers. The emWave2 is a biofeedback device that trains you to change your heart rhythm pattern to facilitate a state of coherence and enter “the zone.”
Basically, when you use the emWave2 a few minutes a day, it can teach you how to transform feelings of anger, anxiety or frustration into peace and clarity. It actually comes with software that you run on your computer which teaches you how to do this. But the emWave2 is kinda big, and you certainly can’t place it discreetly in your pocket or take it with you on a run – although they have just developed a phone app called “Inner Balance” that can allow for a bit more portability and ease-of-use, albeit with less biofeedback potential.
Then there are devices such as the Tinke. A small, colored square with two round sensors, the Tinke, made by a company called Zensorium, is designed to measure heart rate, respiratory rate, blood oxygen level, and heart rate variability over time. Every time you measure, it gives you your “Zen” score and your “Vita” score, and you can simply use a measurement like this every morning to see how ready your body is for the rigors of training.
All you need to do is attach the Tinke to your iPhone, and then place your thumb over the sensors so the Tinke can measure cardiorespiratory levels. Tinke captures blood volume changes from the fingertip using optical sensing and signal processing. It takes about sixty seconds to measure all the parameters you need, from you stress level to your breathing and more.
You can use the Tinke anytime, anywhere, and it’s designed primarily to encourage deep breathing exercises in order to promote relaxation and alleviate stress levels. While it’s not a medical device, it can assist in stress relief and recovery when you combine it with regular deep breathing exercises, and I’ll admit that as a self-proclaimed biohacker I am addicted to playing with my Tinke every morning (which almost sounds a bit perverted to say).
Then there are simple apps that simply use the lens of your phone camera to check your heart rate or heart rate variability, or even teach you how to breathe properly. The Azumio Stress Check App is a perfect example of that. It’s not incredibly accurate, but it’s inexpensive and a good way to start.
Of course, there are also wearable body monitoring units you can clip to your body throughout the day, such as the Jawbone UP and FitBit, which measure sleep, movement and calories, but won’t measure heart rate, pulse oximetry, or heart rate variability – so I don’t consider these to be ideal recovery monitoring devices per se. Finally, there are wristwatch-like units that are getting fancier, such as the new MyBasis watch, which is a multi-sensor device that continuously measures motion, perspiration, and skin temperature, as well as heart rate patterns throughout the day and night – but once again, this device doesn’t measure things like heart rate variability and pulse oximetry (although there is a similar device under development called a MyBoBo which may offer these measurements).
And while I’ve experimented with a variety of heart rate chest strap style measurement tools, include the Bioforce and Omegawave, my top recommendation for measuring your heart rate variability is the SweetBeat system, and this is what I personally use every day to track HRV. I like the SweetBeat because it’s easy-to-use, intuitive, allows you to track your heart rate variability in real time (such as when you’re out on a run or working at your office) and is also something you can use with meals to test food sensitivities by tracking heart rate response to foods.
Here are some sample charts of what kind of measurements and fluctuations you might see when measuring HRV, HF and LF, taken during the time that both my lifestyle and exercise stress significantly increased as I approached a big race (for a more detailed explanation of the charts below, read this blog post):
We’ve been hearing for years that artificial sweeteners are bad for you and can actually cause weight gain. This flies in the face of logic. After all, if you’re consuming fewer calories than you would if you were using sugar or honey, how could they encourage weight gain? And just how bad are they for you in other ways? We decided to stop asking ourselves these questions and get down to what appears to be the truth of the matter.
Artificial sweeteners have been around for more than 130 years; saccharin was developed in 1878 from coal tar derivatives (yum!). It didn’t enter widespread use until WWI, due to sugar shortages. But artificial sweeteners experienced a huge boost in popularity in the 1960s and 1970s, as new sweeteners were introduced to satisfy the sweet tooth (teeth?) of dieters.[1] The rising tide of American obesity increased in step with the increase in consumption of artificially sweetened products, particularly diet sodas.
Artificial sweeteners have been controversial and subject to scrutiny almost from their inception. The USDA began investigating saccharin in 1907, and then proceeded to flipflop, proclaiming it an adulterant in 1911, then stating in 1912 that saccharin was not harmful to human health.
Cyclamates underwent similar scrutiny by the FDA in the 1960s, and is still banned in the U.S., spurring the development of alternatives such as aspartame and sucralose. Artificial sweeteners are in widespread use today in sodas, candies and other processed foods, as well as available on (almost) every restaurant table in America. Some, like stevia, claim to be derived from natural sources, the implication being that they are better for you than completely laboratory-derived products. (Most stevia products are actually highly processed.)
The basis for the story that artificial sweeteners promote weight gain comes from a study at Purdue University.[2] Rats were fed yogurt sweetened with glucose (table sugar) and compared to a group of rats fed yogurt sweetened with zero-calorie saccharin. Three different experiments were conducted to see whether saccharin changed the rats’ ability to regulate intake of calories. The saccharin-fed rats later consumed more calories, gained more weight, put on more body fat and didn’t make up for it by cutting back on calories. This phenomenon occurred at statistically significant levels.
The researchers postulated that when the body detects sweetness, it gears up to consume a high-calorie food. When the false sweetness is not followed by the anticipated calories, it confuses the body’s connection between sweetness and calories. This leads to increased intake of calories and a blunted satiety response to overeating, leading to increased accumulation of fat.
Of course, these were rats, not people. Other studies have shown that at some level, the brain can distinguish between real and artificial sweeteners—but not, as it happens, if the person regularly consumes diet soft drinks. A diet soda drinker’s pleasure center in the brain will respond equally to either sucrose- or artificially sweetened sodas. Activity was diminished in an area of the brain called the caudate head in diet soda drinkers. Decreased activation of this area is associated with elevated risk of obesity.[3]
So far, we’ve learned that artificial sweeteners may blunt people’s satiety response, but that if they come in the form of diet soda, this effect may be worsened. Is there anything else out there to worry us about artificial sweeteners?
Although there have been many hoaxes perpetuated around artificial sweeteners and their alleged danger to human health, according to the FDA, all sweeteners currently on the market have been conclusively proven safe for human consumption.[4] There is no credible evidence that any of these sweeteners cause toxic reactions, cancer, seizures, or any of the other claims that have been lodged against them.
However, there is ample evidence they can make you fat. What more do we need to know? Artificial sweeteners are products that do the exact opposite of what they were intended to do.
So what alternatives do we have? We know that sugar isn’t good for us, and we know that high fructose corn syrup is worse. Sugar alcohols (which are not alcohols) can raise blood glucose levels, although not usually to the level of sugar. Sugar alcohols (including maltitol, sorbitol and xylitol) can also cause gastric symptoms, especially in children.[5] Honey is no better than sugar, healthwise, especially if processed (raw honey may confer some health benefits in the form of trace minerals, vitamins and phytochemicals).
Fortunately, there are a number of alternatives for sweetening the morning cup of tea or coffee. Which you choose depends on your personal taste, plus where it falls on the glycemic index. Diabetics in particular need to find a low-glycemic-index sweetener they can live with if they wish to avoid artificial sweeteners.
Brown rice syrup. This has a distinct malty or nutty flavor. It falls high on the glycemic index at 85, which makes it unsuitable for diabetics. It does contain minute traces of arsenic because brown rice contains minute traces of arsenic, but not enough to harm you unless you’re really chugging the stuff—in which case, you might have other worries.
Coconut palm sugar. This is a pale brown, granulated sugar made from the sap of coconut palms. It has a pleasant, light flavor and is relatively low on the glycemic index at 35.
Barley malt syrup. This is derived from malted (sprouted) barley that is cooked until the starch converts to sugar. It comes as a syrup or powder and is 42 on the glycemic index.
Agave nectar. Made from the juice of the blue agave plant (the same plant used to make tequila). It’s low on the glycemic index, between 15 and 30, depending on whether you are using raw or refined syrup. The raw syrup is darker and has more flavor, while the refined is a light color and has less flavor.
Stevia. Stevia is 0 on the glycemic index although it is 200-300 times sweeter than table sugar. It is touted as a natural product, but the white powder you put in your iced tea is in fact the product of an intensive refining process (and may also contain maltodextrin, which is highly processed and may elevate blood sugar[6]). There are liquid tinctures of stevia available that are not highly processed.
The sweeteners mentioned here are widely available, affordable, and palatable to most people (although some people react strongly to the taste of stevia). Find out more about sweeteners and where they fall on the glycemic scale at http://www.organiclifestylemagazine.com/healthy-sugar-alternatives/
Many of you are athletes or fitness-focused individuals and currently use SweetBeat to monitor and track your HRV as it correlates to your training routine. In an effort to better meet your needs, we have added some features that are specifically designed for HRV recovery and training.
The latest release of SweetBeat can now be downloaded from the App Store.
When you press start, you can view a selection screen to monitor stress, run HRV For Training session or run a Heart Rate Recovery session. If you select the Help icon (question mark in a box) at the right of each session type, you will see the following screen.
Session Selection Screen
You can learn about the HRV For Training feature set by swiping to the left after you select the help ? button. The following six screens give you an overview of the new SweetBeat functionality.
To run an HRV For Training session, select the session option, and press the start button on the main monitor screen. SweetBeat will automatically filter your HRV readings from your heart rate monitor and begin counting down a three-minute session.
The SweetBeat learning algorithm will establish a reference line over a few days as shown in the HRV For Training Over Time graph.
We recommend that you initially do light training or no training for a couple of days. If you do train during initial sessions, the algorithm will compensate and adjust over the first 10 days of use, improving accuracy over time.
The HRV For Training Over Time graph will provide recommendations after each daily reading for a regular training day (HRV is above reference line), a light exertion day (HRV is below reference line for one day), or a rest day (HRV is below the reference line for two days).
If you wish, SweetBeat will remind you to take a daily HRV reading, with a selectable time that you preset. This reminder will appear initially when you select your first HRV training session. If you want to change the daily reminder time, you can access the preset in the settings menu under application settings.
Daily Reminder Setting
Charts for each session are included in history tab as well as cumulative charts for all sessions. HRV training sessions are tagged as HRV in the history screen. You can also still select your own tag.
Good luck with your training! If you have any questions you can email us at support@sweetwaterhrv.com and we will reply within 24 hours.
SweetWater Health is a very young company. SweetBeat™, our iPhone app, has been on the market for just a little over a year. We started with no users at all (except for us SweetWaterites), and during the months that followed SweetBeat’s debut, we have watched with interest as our audience of users has grown.
And you, our users, have surprised us. We thought that most people would purchase SweetBeat to help reduce stress. There are certainly some users that fit that profile, but the dedicated users, the ones who really use SweetBeat all the time, are athletes—often elite athletes—who use SweetBeat for HRV training to help understand their bodies better and to optimize training schedules.
And you—our dedicated users—told us that the product needed tweaking so you could use it even more effectively. So tweak it we did, and we need to tell you about the changes we made. This is important to know even if you are not an athlete, as your HRV levels will appear lower than in previous versions. This does not mean your HRV has changed—only the scale.
SweetBeat version 1.2.2 (and beyond) includes a refinement of the HRV calculation algorithm to fine-tune it for athletes. Some of you ultra-fit individuals were “maxing out” the HRV reading at 100. The new algorithm fixes this with the result that the calculated HRV will appear lower than in previous versions of SweetBeat. We have included some charts to illustrate what you can expect with version 1.2.2.
For SweetBeat users who have been measuring HRV for athletic training, your HRV will appear to decrease with version 1.2.2. For this reason we recommend starting with a new baseline taken on a day that you know you are fully recovered. We believe this will provide more accurate results in the long run as your fitness levels improve.
Below are a couple of charts that illustrate how your new HRV scores may differ from your previous scores.
How is HRV calculated? SweetBeat measures the RR intervals (the time between heartbeats) then calculates the HRV parasympathetic parameter rMSSD. We then run a scaling algorithm on rMSSD to create an HRV value. Typical values will be in the range of 0-100. rMSSD is the square root of the mean squared difference of successive RRs. Elite athletes will experience very high rMSSD scores compared to others.
If you want to see the raw numbers, look at the “Geek Screen” on the flip side of the ECG heart beat screen. To see the Geek Screen, press the button in lower right corner of the window where the animated ECG appears. You will see the summary numbers from your last session. Below are the same charts from above that include rMSSD.
As a reminder on how to use HRV for training:
Take your HRV every morning prior to any activity.
This session can be measured sitting, standing or lying down, but be consistent in the position you select.
Do a five-minute session.
HRV is time dependent so be consistent in the length of the session
If HRV drops significantly (more than 10 points) a low exertion or rest day is in order.
If HRV drops significantly two or more days in a row, a rest day is in order.
Diabetic neuropathy is one of the most hideous symptoms of a devastating disease, and can result in loss of limbs and eyesight, debilitating pain—and even death. I’m about to ask a favor of anyone reading this who is diabetic, but first, a brief description of diabetic neuropathy for those who haven’t already learned about it.
There are various kinds of neuropathies, or damage to the nervous system, that can result from diabetes. In diabetes, neuropathies are believed to be caused by long-term exposure of the nerve cells to high blood glucose and possibly by low levels of insulin.[1] Symptoms of neuropathies depend on the type of nerve damage:
Peripheral neuropathies, the most common, cause pain or numbness in toes, feet, legs, hands, arms, or fingers.
Diabetic autonomic neuropathy (DAN) affects the autonomic nervous system and may cause changes in digestion, bowel or bladder function, sexual response and perspiration.
Cardiovascular autonomic neuropathy (CAN), one of the most serious versions, damages the nerve fibers that control the heart and blood vessels, resulting in cardiovascular disease.[2]
Proximal neuropathy causes pain in the thighs, hips or buttocks and leads to weakness in the legs.
Focal neuropathy results in the sudden weakness of one nerve or group of nerves, causing pain or weakness in that area. While painful, focal neuropathy usually does not lead to more severe, long-term problems.[3]
The most insidious aspect of diabetic neuropathy is that by the time you experience symptoms, the nerve damage is already done. Various therapies are available for treating the symptoms and slowing nerve damage, but the best of all approaches is PREVENTION. The best prevention is keeping blood sugar under control, but as the nerve damage often takes place long before you notice symptoms, wouldn’t it be great if there were some way to detect the onset of neuropathy before damage has been done?
While neuropathy testing has been added to the treatment recommendations of the American Diabetes Association, testing for diabetic neuropathy is usually not a part of your annual or biannual visit to the doctor. (If it is, we applaud your physician!) Neuropathy is usually diagnosed after you have developed symptoms—by which time, it is too late to reverse the damage; it can only be managed.
There is, however, a way to test for diabetic neuropathy that is non-invasive, not painful, and easy. Heart rate variability (HRV) can be used to identify nerve damage in very early stages, which would allow diabetic patients to seek help from their physicians before greater damage has occurred. (For an explanation of HRV, download our whitepaper on HRV or see the article on HRV in Wikipedia.)
SweetWater Health is working on an iPhone app that would allow diabetics to test themselves at home as often as desired (though twice a year is usually sufficient). The app would require the purchase of a compatible heart rate monitor such as athletes use, usually priced under $100. You would perform three simple physical exercises while wearing the monitor and the app will tell you if you are experiencing damage to your nervous system.
Now for the favor. If you are diabetic and are interested in the development of such an app, please go to http://www.sweetwaterhrv.com/dan.php and let us know. Your input will help us by letting us know there is a genuine need and desire for such a product. You can also sign up for more information about the product and volunteer to be a beta tester if you want.
Sincere thanks for taking the time to help us help you!
Fat, fat, fat, fat. So much controversy swirls around various forms of fat. First we’re told coconut oil is deadly—then it’s a healthy miracle food. Then we’re told butter is poison—but now, it, too, has assumed the virtuous glow of health. Margarine is the healthy butter substitute—but now we hear it clogs your arteries. Olive oil, once eschewed by American cooks because it added flavors to food, is now lauded by American cooks because it adds flavors to food (and it’s good for you).
So what about the humble kitchen standby for cooking, canola oil? It’s tasteless and it contains high amounts of omega-3 fatty acids, so it should be good for you, right?
Well, apparently not so much. Canola oil is not only bad for you, it’s horrendously bad for you.
Let’s start at the beginning. Have you ever seen a canola plant? No, you haven’t, because there is no such thing. The word “canola” was made up. Originally, it stood for “Canadian oil low-acid.” This is because growers in Canada believed, with good reason, that Americans would not want to eat something called “rapeseed oil.” It also sounded like “granola,” so the producers reasoned it would be perceived as a healthy food.
Rape is a member of the mustard/cabbage family. It has pretty, bright yellow flowers. It’s grown for its seeds—but unprocessed rapeseed has never been used for food, as has mustard seed. That’s because the seeds contain as much as 45% erucic acid, which is a poison. Insects won’t eat the seeds, and natural, unprocessed rapeseed is poisonous to humans and other animals. It causes deposits of fatty acids in the heart and thickening of the cardiac walls, which can lead to valve dysfunction and heart failure. Erucic acid can cause these effects even in quantities as small as 2%, which is the percentage of erucic acid allowed in canola oil in the United States. Rapeseed also contains glycosides, which interfere with thyroid functioning.
Growers have genetically modified the rape plant to produce lower concentrations of erucic acid and glycosides, but the oil must still be processed before it meets the standards set for food-grade oil. Using heat and hexane (and other solvents) strips more of the erucic acid from the oil, but turns the omega-3 fatty acids rancid. These are solidified and removed by partially hydrogenating the oil, which produce free radicals and some trans-fatty acids (known to create fatty deposits on arterial walls).
When Canadian researchers fed formula containing canola oil to piglets, the piglets developed vitamin E deficiency, even though the formula contained sufficient vitamin E for their nutritional needs. Vitamin E deficiency can lead to a boatload of health problems including anemia, muscular weakness, increased risk of heart disease and cancer, and more.
So what has been marketed to the North American public as heart-healthy oil, high in omega-3 fatty acids, is actually an unhealthy, genetically modified trans-fat that can damage vital organs, deplete vitamin E and promote disease. And it’s everywhere. Even if you don’t use it for cooking, canola oil is in many thousands of processed foods such as salad oils, baby foods, sauces, marinades, canned foods, baked goods, and so on.
So I don’t know about you, but when I learned this, I went through every bottle, can and jar in my kitchen and read the ingredients. Anything that contained canola oil went into the trash, never to be purchased by me again. If you want more details, there’s an excellent article in the November-December 2012 issue of Wellbeing Journal entitled “Canola Oil: Is It Healthy?” by Brian Fife, ND. It’s a pretty scary article—and I bet you, too, will clean out your kitchen after reading it!