Tag Archives: mobile monitoring

Announcing Compatibility with LifeTrak’s Zoom Device

SweetWater Health is proud to announce a new partnership with LifeTrak. Their wrist-worn device, Zoom, is optimized for SweetBeat HRV and will work with DailyBeat HRV and SweetBeat on Android. Compatibility with our partner HRV applications coming soon.

Attachment-1

How do I purchase the Zoom HRV?

You can purchase the Zoom HRV device at www.zoomhrv.com. SweetWater customers can use promo code ZOOMSB10 for $10 off the Zoom.
ZoomHRV_1
What makes this wrist-worn monitor accurate enough for HRV?

The Zoom device has been extensively tested to work with the SweetWater HRV family of apps.

What do I need to know?
The Zoom is a completely new user experience. Please read over this information before purchasing the device.

You must sit perfectly still while using the Zoom with our HRV applications. No talking, nodding, or any movement for the entire three minute session.

What’s new in SweetBeat HRV?IMG_1248 (002)

Checkup mode is a 3 minute countdown ideally suited for use with the Zoom device. Checkup can be run with any compatible BTLE heart rate monitor chest strap too. The three minute session allows the Zoom user to accurately assess stress and power levels.

Checkup mode is recommended for use during the day after the HRV for Training session has been run in the morning. Checkup can be run as frequently as needed to assess HRV and stress during daily activities. It can also used as a quick snapshot of HRV recovery during the day.

More to Come!
Our R&D team is working with LifeTrak to pull workout data, battery info and blue light exposure in SweetBeat! Stay tuned for updates to your SweetBeat app. Email us with questions or concerns: support@sweetwaterhrv.com.

 

New Graphs: SweetBeatLife Update!

Yes, you read it right! There is a SweetBeatLife update available, which includes brand new enhanced graphs. The graphs are completely interactive and allow for a better view of your SweetBeatLife metrics.

Key features of the new graphs:

  • Zoom in by putting your pointer finger and thumb on the graph and moving your fingers away from each other. Double tapping the graph can also be used to zoom in.
  • Zoom out by using the same two fingers and making a pinching motion.
  • By holding your finger down on the graph, you will create cross hairs to pinpoint.
  • There is a yellow circle with an “I” in the middle of it in the top right corner which opens up the graph’s key.
  • Turning your phone to the left will give you a landscape view.

Note: If you do not see these graphs when you open SweetBeatLife, this means you have to manually install the update. You can do this by going to your App store, click on the bottom right tab labeled Updates, and install the SweetBeatLife update.

See below for examples of the new graphs:

20150206153316

20150206153217

 

20150206161250

We have been constantly working on SweetBeatLife to make it the most full functioning heart rate variability (HRV) application you’ve ever used. We hope you enjoy these new graphs as much as we do!

Happy Quantifying!

Why Artificial Sweeteners Make You Fat: What Do We Do Now?

SodaWe’ve been hearing for years that artificial sweeteners are bad for you and can actually cause weight gain. This flies in the face of logic. After all, if you’re consuming fewer calories than you would if you were using sugar or honey, how could they encourage weight gain? And just how bad are they for you in other ways? We decided to stop asking ourselves these questions and get down to what appears to be the truth of the matter.

Artificial sweeteners have been around for more than 130 years; saccharin was developed in 1878 from coal tar derivatives (yum!). It didn’t enter widespread use until WWI, due to sugar shortages. But artificial sweeteners experienced a huge boost in popularity in the 1960s and 1970s, as new sweeteners were introduced to satisfy the sweet tooth (teeth?) of dieters.[1] The rising tide of American obesity increased in step with the increase in consumption of artificially sweetened products, particularly diet sodas.

Artificial sweeteners have been controversial and subject to scrutiny almost from their inception. The USDA began investigating saccharin in 1907, and then proceeded to flipflop, proclaiming it an adulterant in 1911, then stating in 1912 that saccharin was not harmful to human health.

Cyclamates underwent similar scrutiny by the FDA in the 1960s, and is still banned in the U.S., spurring the development of alternatives such as aspartame and sucralose. Artificial sweeteners are in widespread use today in sodas, candies and other processed foods, as well as available on (almost) every restaurant table in America. Some, like stevia, claim to be derived from natural sources, the implication being that they are better for you than completely laboratory-derived products. (Most stevia products are actually highly processed.)

The basis for the story that artificial sweeteners promote weight gain comes from a study at Purdue University.[2] Rats were fed yogurt sweetened with glucose (table sugar) and compared to a group of rats fed yogurt sweetened with zero-calorie saccharin. Three different experiments were conducted to see whether saccharin changed the rats’ ability to regulate intake of calories. The saccharin-fed rats later consumed more calories, gained more weight, put on more body fat and didn’t make up for it by cutting back on calories. This phenomenon occurred at statistically significant levels.

The researchers postulated that when the body detects sweetness, it gears up to consume a high-calorie food. When the false sweetness is not followed by the anticipated calories, it confuses the body’s connection between sweetness and calories. This leads to increased intake of calories and a blunted satiety response to overeating, leading to increased accumulation of fat.

Of course, these were rats, not people. Other studies have shown that at some level, the brain can distinguish between real and artificial sweeteners—but not, as it happens, if the person regularly consumes diet soft drinks. A diet soda drinker’s pleasure center in the brain will respond equally to either sucrose- or artificially sweetened sodas. Activity was diminished in an area of the brain called the caudate head in diet soda drinkers. Decreased activation of this area is associated with elevated risk of obesity.[3]

So far, we’ve learned that artificial sweeteners may blunt people’s satiety response, but that if they come in the form of diet soda, this effect may be worsened. Is there anything else out there to worry us about artificial sweeteners?

Although there have been many hoaxes perpetuated around artificial sweeteners and their alleged danger to human health, according to the FDA, all sweeteners currently on the market have been conclusively proven safe for human consumption.[4] There is no credible evidence that any of these sweeteners cause toxic reactions, cancer, seizures, or any of the other claims that have been lodged against them.

However, there is ample evidence they can make you fat. What more do we need to know? Artificial sweeteners are products that do the exact opposite of what they were intended to do.

So what alternatives do we have? We know that sugar isn’t good for us, and we know that high fructose corn syrup is worse. Sugar alcohols (which are not alcohols) can raise blood glucose levels, although not usually to the level of sugar. Sugar alcohols (including maltitol, sorbitol and xylitol) can also cause gastric symptoms, especially in children.[5] Honey is no better than sugar, healthwise, especially if processed (raw honey may confer some health benefits in the form of trace minerals, vitamins and phytochemicals).

Fortunately, there are a number of alternatives for sweetening the morning cup of tea or coffee. Which you choose depends on your personal taste, plus where it falls on the glycemic index. Diabetics in particular need to find a low-glycemic-index sweetener they can live with if they wish to avoid artificial sweeteners.

Brown rice syrup. This has a distinct malty or nutty flavor. It falls high on the glycemic index at 85, which makes it unsuitable for diabetics. It does contain minute traces of arsenic because brown rice contains minute traces of arsenic, but not enough to harm you unless you’re really chugging the stuff—in which case, you might have other worries.

Coconut palm sugar. This is a pale brown, granulated sugar made from the sap of coconut palms. It has a pleasant, light flavor and is relatively low on the glycemic index at 35.

Barley malt syrup. This is derived from malted (sprouted) barley that is cooked until the starch converts to sugar. It comes as a syrup or powder and is 42 on the glycemic index.

Agave nectar. Made from the juice of the blue agave plant (the same plant used to make tequila). It’s low on the glycemic index, between 15 and 30, depending on whether you are using raw or refined syrup. The raw syrup is darker and has more flavor, while the refined is a light color and has less flavor.

Stevia. Stevia is 0 on the glycemic index although it is 200-300 times sweeter than table sugar. It is touted as a natural product, but the white powder you put in your iced tea is in fact the product of an intensive refining process (and may also contain maltodextrin, which is highly processed and may elevate blood sugar[6]). There are liquid tinctures of stevia available that are not highly processed.

The sweeteners mentioned here are widely available, affordable, and palatable to most people (although some people react strongly to the taste of stevia). Find out more about sweeteners and where they fall on the glycemic scale at http://www.organiclifestylemagazine.com/healthy-sugar-alternatives/

SweetBeat Tuned for Athletic HRV Training

Front crawl swimmer speeding through the pool

 

Many of you are athletes or fitness-focused individuals and currently use SweetBeat to monitor and track your HRV as it correlates to your training routine. In an effort to better meet your needs, we have added some features that are specifically designed for HRV recovery and training.

The latest release of SweetBeat can now be downloaded from the App Store.

When you press start, you can view a selection screen to monitor stress, run HRV For Training session or run a Heart Rate Recovery session. If you select the Help icon (question mark in a box) at the right of each session type, you will see the following screen.

Session Selection Screen

Select session

 

You can learn about the HRV For Training feature set by swiping to the left after you select the help ? button. The following six screens give you an overview of the new SweetBeat functionality.

 

Screen1

 

Screen2

 

Screen3

 

Screen4

 

Screen5

 

HRV for Training over time

 

To run an HRV For Training session, select the session option, and press the start button on the main monitor screen. SweetBeat will automatically filter your HRV readings from your heart rate monitor and begin counting down a three-minute session.

The SweetBeat learning algorithm will establish a reference line over a few days as shown in the HRV For Training Over Time graph.

We recommend that you initially do light training or no training for a couple of days.  If you do train during initial sessions, the algorithm will compensate and adjust over the first 10 days of use, improving accuracy over time.

The HRV For Training Over Time graph will provide recommendations after each daily reading for a regular training day (HRV is above reference line), a light exertion day (HRV is below reference line for one day), or a rest day (HRV is below the reference line for two days).

If you wish, SweetBeat will remind you to take a daily HRV reading, with a selectable time that you preset. This reminder will appear initially when you select your first HRV training session. If you want to change the daily reminder time, you can access the preset in the settings menu under application settings.

Daily Reminder Setting

Daily Reminder

 

Charts for each session are included in history tab as well as cumulative charts for all sessions. HRV training sessions are tagged as HRV in the history screen.  You can also still select your own tag.

Good luck with your training! If you have any questions you can email us at support@sweetwaterhrv.com and we will reply within 24 hours.

SweetBeat Gets the Blues

Bluetooth is a wonderful invention. It enhances the mobility of the athlete, who no longer has to mess with wires while working out. It’s also a boon to the person who likes to garden or do other chores while listening to music. (I know one gentleman who bought Bluetooth headphones because he liked to garden while listening to music and snipped his wires with the garden shears once too many times.)

But when it comes to heart rate variability, not all Bluetooth is created equal. When SweetWater Health came out with our Bluetooth-compatible version of SweetBeat™, we tested several BT sensors to assure accuracy. Heart rate requires a lower sampling rate, and all sensors performed well for heart rate detection. But HRV requires a more frequent sampling rate to be accurate, which is why the iPhone camera sensor, at 30 frames per second, cannot deliver accurate HRV data.

You can use any Bluetooth v4.0 low-energy heart rate monitor with SweetBeat, including 60Beat and newer Polar H7 models with the iPhone 4S, 5, iPad 3 and newer iPod Touch 5 devices—with one exception. You cannot use Wahoo Blue HR. It’s fine for heart rate, but is not suitable for heart rate variability. This is noted in the app store description of SweetBeat.

We’re sorry for any inconvenience this may cause our Wahoo Blue HR owners. We have worked closely with Wahoo on this issue, but as of this writing, the technical issues have not yet been resolved.

Questions? Please contact us at info@SweetWaterHRV.com.

Can We Fight Diabetic Neuropathy with Your Help?

Diabetic neuropathy is one of the most hideous symptoms of a devastating disease, and can result in loss of limbs and eyesight, debilitating pain—and even death. I’m about to ask a favor of anyone reading this who is diabetic, but first, a brief description of diabetic neuropathy for those who haven’t already learned about it.

There are various kinds of neuropathies, or damage to the nervous system, that can result from diabetes. In diabetes, neuropathies are believed to be caused by long-term exposure of the nerve cells to high blood glucose and possibly by low levels of insulin.[1] Symptoms of neuropathies depend on the type of nerve damage:

Peripheral neuropathies, the most common, cause pain or numbness in toes, feet, legs, hands, arms, or fingers.

Diabetic autonomic neuropathy  (DAN) affects the autonomic nervous system and may cause changes in digestion, bowel or bladder function, sexual response and perspiration.

Cardiovascular autonomic neuropathy (CAN), one of the most serious versions, damages the nerve fibers that control the heart and blood vessels, resulting in cardiovascular disease.[2]

Proximal neuropathy causes pain in the thighs, hips or buttocks and leads to weakness in the legs.

Focal neuropathy results in the sudden weakness of one nerve or group of nerves, causing pain or weakness in that area. While painful, focal neuropathy usually does not lead to more severe, long-term problems.[3]

The most insidious aspect of diabetic neuropathy is that by the time you experience symptoms, the nerve damage is already done. Various therapies are available for treating the symptoms and slowing nerve damage, but the best of all approaches is PREVENTION. The best prevention is keeping blood sugar under control, but as the nerve damage often takes place long before you notice symptoms, wouldn’t it be great if there were some way to detect the onset of neuropathy before damage has been done?

While neuropathy testing has been added to the treatment recommendations of the American Diabetes Association, testing for diabetic neuropathy is usually not a part of your annual or biannual visit to the doctor. (If it is, we applaud your physician!) Neuropathy is usually diagnosed after you have developed symptoms—by which time, it is too late to reverse the damage; it can only be managed.

There is, however, a way to test for diabetic neuropathy that is non-invasive, not painful, and easy. Heart rate variability (HRV) can be used to identify nerve damage in very early stages, which would allow diabetic patients to seek help from their physicians before greater damage has occurred. (For an explanation of HRV, download our whitepaper on HRV or see the article on HRV in Wikipedia.)

SweetWater Health is working on an iPhone app that would allow diabetics to test themselves at home as often as desired (though twice a year is usually sufficient). The app would require the purchase of a compatible heart rate monitor such as athletes use, usually priced under $100. You would perform three simple physical exercises while wearing the monitor and the app will tell you if you are experiencing damage to your nervous system.

Now for the favor. If you are diabetic and are interested in the development of such an app, please go to http://www.sweetwaterhrv.com/dan.php and let us know. Your input will help us by letting us know there is a genuine need and desire for such a product. You can also sign up for more information about the product and volunteer to be a beta tester if you want.

Sincere thanks for taking the time to help us help you!


[1] National Diabetes Clearinghouse, http://diabetes.niddk.nih.gov/dm/pubs/neuropathies/

[2] “Diabetic Cardiovascular Autonomic Neuropathy,” A. Vinik, MD, PhD, FCP, MACP; D. Ziegler, MD, PhD., FRCPE; Contemporary Reviews in Cardiovascular Medicine, Jan. 22, 2013.